Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Shu-Sheng Zhang,* Bo Yang, Hui-Xiang Li and Xue-Mei Li

College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, 266042 Qingdao, Shandong,
People's Republic of China
Correspondence e-mail: shushzhang@126.com

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.009 \AA$
R factor $=0.063$
$w R$ factor $=0.132$
Data-to-parameter ratio $=15.9$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

Benzaldehyde 1-(2,3,4,6-tetra-O-acetyl- β-Dgalactopyranosyl)thiosemicarbazone

In the title compound, $\mathrm{C}_{22} \mathrm{H}_{27} \mathrm{~N}_{3} \mathrm{O}_{9} \mathrm{~S}$, the six-membered pyranosyl ring adopts a chair conformation. The acetyl group opposite the thiosemicarbazone substituent occupies an axial position, while all other substituents are in equatorial positions. The molecules are linked by $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds into chains parallel to the b axis, and two additional C $\mathrm{H} \cdots \mathrm{O}$ interactions provide further stability in a threedimensional network.

Comment

In the title compound, (I), the bond lengths and angles of the xylopyranosyl ring are comparable to those in the related compounds 4-methoxybenzaldehyde 4-(2,3,4,6-tetra- O-acetyl-β-d-glucopyranosyl)thiosemicarbazone (Zhang et al., 2004) and benzaldehyde 1-(2,3,4-tri- O-acetyl- β-D-xylopyranosyl)thiosemicarbazone (Yang et al., 2004). The acetyl group at atom C 4 occupies an axial position, while all other substituents are in equatorial positions. The pyranosyl ring adopts a chair conformation, and atom S 1 is in a synperiplanar position with respect to atom C 1 , the $\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 15-\mathrm{S} 1$ torsion angle being 8.7 (6) ${ }^{\circ}$.

In the crystal structure of (I), the molecules are linked by $\mathrm{C} 11-\mathrm{H} 11 B \cdots \mathrm{O} 5^{\mathrm{ii}}$ hydrogen bonds (Table 2) into chains parallel to the b axis (Fig. 2). The packing is further stabilized by two additional $\mathrm{C} 7-\mathrm{H} 7 B \cdots \mathrm{O} 10 B^{\mathrm{i}}$ and $\mathrm{C} 16-\mathrm{H} 16 A \cdots \mathrm{O} 9^{\mathrm{i}}$ interactions (Table 2), giving a three-dimensional framework.

Experimental

The title compound was prepared according to the method described by Zhang et al. (2004).

Crystal data

$\mathrm{C}_{22} \mathrm{H}_{2} \mathrm{~N}_{3} \mathrm{O}_{9} \mathrm{~S}$	$D_{x}=1.283 \mathrm{Mg} \mathrm{m}^{-3}$
$M_{r}=509.53$	Mo Ka radiation
Monoclinic, $P 2_{i}$	Cell parameters from 1389
$a=11.547(5) \AA$	reflections
$b=9.113(4) \AA$	$\theta=2.6-19.0^{\circ}$
$c=12.801(5) \AA$	$\mu=0.18 \mathrm{~mm}^{\circ} \AA$
$\beta=101.651(8))^{\circ} \AA^{\circ}$	$T=293(2) \mathrm{K}$
$V=1319.3(9) \AA^{3}$	Needle, colorless
$Z=2$	$0.55 \times 0.08 \times 0.08 \mathrm{~mm}$

Received 15 September 2005 Accepted 22 September 2005 Online 28 September 2005

Figure 1
The structure of (I), showing 50% probability displacement ellipsoids and the atom-numbering scheme. H atoms have been omitted for clarity.

Data collection

Siemens SMART CCD area detector diffractometer ω scans
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
$T_{\min }=0.910, T_{\max }=0.986$
7435 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.063$
$w R\left(F^{2}\right)=0.132$
$S=1.06$
5040 reflections
316 parameters
H-atom parameters constrained

5040 independent reflections
3120 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.030$
$\theta_{\text {max }}=26.2^{\circ}$
$h=-7 \rightarrow 14$
$k=-11 \rightarrow 11$
$l=-15 \rightarrow 15$
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0433 P)^{2}\right]$
where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}<0.001$
$\Delta \rho_{\text {max }}=0.19 \mathrm{e}_{\AA^{-3}}$
$\Delta \rho_{\text {min }}=-0.18$ e \AA^{-3}
Absolute structure: Flack (1983),
2229 Friedel pairs
Flack parameter: 0.06 (11)

Table 1
Selected geometric parameters ($\AA{ }^{\circ}{ }^{\circ}$).

S1-C15	$1.665(4)$	$\mathrm{N} 1-\mathrm{C} 1$	$1.429(5)$
$\mathrm{O} 1-\mathrm{C} 5$	$1.417(5)$	$\mathrm{N} 2-\mathrm{C} 15$	$1.352(5)$
$\mathrm{O} 1-\mathrm{C} 1$	$1.420(5)$	$\mathrm{N} 2-\mathrm{N} 3$	$1.373(5)$
$\mathrm{N} 1-\mathrm{C} 15$	$1.332(5)$	$\mathrm{N} 3-\mathrm{C} 16$	$1.274(5)$
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 15-\mathrm{N} 2$	$-170.6(4)$	$\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 15-\mathrm{S} 1$	$8.7(6)$

Table 2
Hydrogen-bond geometry ($\AA^{\circ},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
C7-H7B $\cdots \mathrm{O}^{\mathrm{i}}$	0.96	2.53	$3.477(6)$	169
C11-H11B $\mathrm{O}^{\mathrm{iii}}$	0.96	2.45	$3.300(7)$	147
C16-H16A OO^{i}	0.93	2.45	$3.244(8)$	143

Symmetry codes: (i) $-x, y-\frac{1}{2},-z+2$; (ii) $x, y+1, z$.

Figure 2
Packing diagram of (I), showing the formation of chains along the b axis. Dashed lines indicate $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds.

All H atoms were positioned geometrically and treated as riding, with $\mathrm{C}-\mathrm{H}=0.93-0.98 \AA, \mathrm{~N}-\mathrm{H}=0.86 \AA$ and $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C}, \mathrm{N})$, or $U_{\text {iso }}(\mathrm{H})=1.5 U_{\text {eq }}(\mathrm{C})$ for the methyl H atoms.

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997a); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997a); molecular graphics: SHELXTL (Sheldrick, 1997b); software used to prepare material for publication: SHELXTL, PARST (Nardelli, 1995) and PLATON (Spek, 2003).

This project was supported by the Program for New Century Excellent Talents in Universities (No. NCET-040649) and the Project of Educational Administration of Shandong Province (No. J04B12).

References

Flack, H. D. (1983). Acta Cryst. A39, 876-881.
Nardelli, M. (1995). J. Appl. Cryst. 28, 659.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (1997a). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Sheldrick, G. M. (1997b). SHELXTL. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.
Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
Yang, B., Zhang, S.-S., Wang, Y.-F., Li, X.-M., Jiao, K., Kassim, M. \& Bohari, M. Y. (2004). Acta Cryst. E60, o1902-o1904.

Zhang, S.-S., Yang, B., Li, J.-Z., Liu, Q., Li, X.-M., Jiao, K., Kassim, M. \& Bohari, M. Y. (2004). Acta Cryst. E60, o2050-o2052.

